If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-32y+8=0
a = 1; b = -32; c = +8;
Δ = b2-4ac
Δ = -322-4·1·8
Δ = 992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{992}=\sqrt{16*62}=\sqrt{16}*\sqrt{62}=4\sqrt{62}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{62}}{2*1}=\frac{32-4\sqrt{62}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{62}}{2*1}=\frac{32+4\sqrt{62}}{2} $
| 3x=150+1/2x | | x1/2=1/4 | | 2x+3+3=10x+8+8=5x+8+8+8 | | |6y+2+2y+6-8=0| | | 2x+3+3=10x+8+8 | | 6y+2+2y+6-8=0 | | x³-x²=100 | | 6x−5(2x+14)=8−4x | | 6 | | 6 | | 6870=x^2+5x+70 | | 13265=x^2+10x+65 | | x½=¼= | | x½=¼ | | 8105=x^2+10x+30 | | 3(2x1)=21 | | -3(2x1=21 | | 10x²-4x=16 | | (x-1)²(x-5)/x+5=0 | | -42=4n+63+7 | | x-33=20 | | -7(-2n-2)+7n=-91 | | (5-t)/5=9 | | 4(x)+90=9(x)+55 | | -5k-6(5-2k)=-86 | | (7/4)(x)-2=4/56 | | (7/4)(x)-2=4 | | (7/4)(x)-9=7 | | (7/4)(x)-6=8 | | (7/4)(x)-8=3 | | (7/4)(x)-6=7 | | -7(7k+3)=175 |